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Abstract: The cumulative prospect theory suggests

that individuals overweight low probability events and

underweight high probability events. This tendency will create an S-shaped probability transformation. This
paper is particularly interested in exploring the dynamic nature of the probability weighting functions in the
context of lotteries. When individuals change their perceptions about the probabilities of various possible
outcomes, they are likely to vary their probability weights over time. This paper poses the question: Would
the probability weighting functions converge to the linear probability weighting function over time? On one
hand, we assume that individuals would learn from their errors and adjust their probability weights according
to a mean-reverting process. On the other hand, we assume that individuals would inflate the probability

weights if encouraged by winning any prize.

QOur Monte

Carlo simulation reveals that individuals’

probability weighting functions are likely to converge to the linear probability weighting function, therefore
confirming the ability, on the part of individuals, to learn slowly about their cognitive biases.
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1. INTRODUCTION

It is recognised that the von Neumann-
Morgenstern expected utility theory is not able to
provide an adequate description of choice
phenomenon such as framing effects, non-linear
preference, source dependence, risk seeking, and
lose aversion. The non-expected utility models
emerged since the late 1970s have their sight on
closing the gap between the theory and the reality.
Among the various new paradigms, the rank
dependent utility theory [Quiggin, 1982] and the
cumulative prospect theory [Kahneman and
Tversky, 1979; Tversky and Kahneman, 1992],
have received much attention.

A significant implication of the cumulative
prospect theory is the fourfold pattern of risk
attitudes. For non-mixed prospects, the shapes of
the value and the probability weighting functions
(PWFs) imply (a) risk aversion for gains of high
probability, (b) risk seeking for gains of low
probabilities, (¢) risk seeking for losses of high
probabilities, and (d) risk aversion for losses of
low probabilities. This characterisation is
observed by several experiments [see, €.8.
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Tversky and Fox, 1995; Lattimore et al., 1992; Wu
and GonZalez? 1996 Jullien and Salanié, 2000].

The PWFs portrayed by these non-expected utility
theories are static PWFs and there is no attempt on
the part of the authors to provide clues about the
dynamic nature of the PWFs. In the context of
repeated Dbets, it is difficult to imagine that
individuals would not change their perception
about the probabilities of the possible outcomes
over time. A literature search could not disclose
any work done on the dynamics of PWFs. This
paper aims to study the dynamic nature of PWFs,
in particular the PWF for gains, in the context of
lotteries [see Fennema and Wakker, 1994]. We
pose the question: Would individuals’ PWF for
gains converge (o the linear PWF given enough
time has elapsed? A Monte Carlo study of a mean-
reverting model with a jump process is used to
simulate the adjustment process for the PWF for
gains. The results reveal that individuals’ PWF for
gains do have a tendency to converge to the linear
PWF.

2. PROBABILITY WEIGHTING

1439



Edwards [1962] suggests that individuals when
confronted with risky outcomes tends to inflate the
probabilities of - low-probability events (e.g.,
winning the jackpot of a lotto game) and to deflate
the probabilities of high-probability events (e.g.,
being caught speeding by a speed camera). This
tendency would manifest an S-shaped probability
transformation. Psychological research attributes
this phenomenon to cognitive factors such as (a)
illusion of control [Langer, 1975] whereby
individuals perceive chance activities as if they
were determined by skill, and (b) retrievability of
instances [Tversky and Kahneman, 1974] whereby
the subjective probability of an event is raised by
familiarity, salience, and recentness.

In their laboratory experiment on (graduate
students’) risk attitudes, Tversky and Kahneman
[1992] estimate the relationship between the
certainty-equivalent-outcome (c¢/x) ratio to the

probability of outcome (p). Their experimental
data shows a fourfold pattern of risk attitudes: risk
aversion for gains of high probabilities, risk
seeking for gains of low probabilities, risk
aversion for losses of low probabilities, and risk
seeking for losses of high probabilities. They also
find close to' constant relative risk aversion.
According to the cumulative prospect theory, this
relationship between c¢/x and p can be

approximated by a two-part function:
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where w*(p) is a PWF for gains with a parameter

of gains (y =0.61), w™(p) is the PWF for losses
with a parameter of losses (& = 0.65).

Although the PWFs for gains and for losses
resemble each other, the difference in values of y

and § shows that their characteristic curvatures
are not symmetric and therefore, there is no
reflection effect over a reference point.
Experiments conducted by Cohen et al. [1987] (on
134 college students) and Wehrung [1989] (on 127
oil executives) find that there is independence of
risk attitudes on the gain and on the loss side. And
these experiments consistently show that the PWF
for gains is slightly more curved than the PWF for

losses because risk aversion is more pronounced
for gains than risk seeking for losses.

Note that if the probability weighing is absent,
then the parameters ¥, 6 =1 would equal to unity

and we have a linear PWF  where

wh(p)=w(p)=p.

Figure 1 depicts the PWFs for both gains and
losses, specified in Tversky and Kahneman [1992].
The PWFs in Figure 1 show that individuals do
overweight low probabilities and underweight
moderate and high probabilities with probabilities
in the middle of range relatively unchanged. Thus,
producing the S-transformation predicted by
Edwards [1962]. The crossover probabilities, p,

occur at approximately 0.34 and 0.36 for PWF for
gains and for losses, respectively.
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Figure 1: The PWFs for gains and losses from
Tversky and Kahneman [1992].

3. THE DISCRETE-EVENT MODEL

In order to study the dynamic nature of the PWFs,
we have to construct a discrete-event model to
capture the dynamics of weights applied to the
probabilities. In this paper, we focus on the PWF
for gains in the context of lotteries. The analysis
for losses is essentially identical, and will not be
discussed.

Consider the lotto game <P, D + S, F> with
S<D<P<LF, where individuals select P
numbers from a field of F numbers, D are the
winning numbers drawn by the operator, and S are
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the supplementary numbers drawn by the operator.
For example, the format of the Australian Lotto
Bloc’s (ALB) Saturday and Oz Lotto is<P, 6 +2,
45>, .

Suppose individuals begin with an S-shaped PWF
for gains with its initial position prescribed by eq
(1) with y=0.61. Suppose each individual
purchases one lofto game per draw (or event time)
with P = D = 6. Individuals’ perception of the
probabilities of winning the various prizes of the
lotto game at any event time will be influenced by
the outcomes happened in the previous event time.
If individuals failed to win any prize over a stretch
of time, they would feel discouraged and would
adjust their weighted probabilities for winning the
prizes downward, thus, leading to less and less
curved PWFs. This can be regarded as similar to
the anchoring adjustment phenomenon described
in the psychology literature [see Wagenaar, 1988).

More specifically, the mean-reverting process
described in the previous paragraph is specified as
follows:

ar ()= (Fo)-wia(@)) B

where @, >0 is an adjustment rate at time ¢t
W(p)is the long-term trend of p and are the
unweighted probabilities. Furthermore,

> <
w?'(p)zW(p)@ p:[) The value of the.

adjustment rate depends on the speed of
individuals could learn from their cognitive biases
(overweighing the probabilities of rare events and
underweighting the probabilities of frequent
events) by processing incoming information and
cues. Note that o can be pre-determined for each

individual. Casual conversation with 28 lotto
players reveals that they feel disappointed if they
did not win any prize in each draw and would
lower their expectation of winning. However, the
players are not able to ascertain their rates of
adjustment.

Reid [1986] suggests that near misses (or failures
that are close to being successful) are believed to
encourage further play. Individuals often report
that they feel their luck has arrived after
experiencing near misses. Near misses also
enhance the feeling of control, therefore,
exaggerate the probability distortion. As a result,
PWE for gains are pushed further away from the
linear PWE. A jump process is employed to
describe the impact of near misses on the PWF for
gains:

Aw! =B, “)
where , >0 is a jump parameter.

Even though individuals may adjust upward or
downward their subjective probabilities, there is
only one force at work at any point of time; they
either win a prize or they do not The
encouragement and discouragement factor is
mutually exclusive. Putting the two mutually
exclusive processes together yields:

v (oY o) -wia ()

when B, =0,0<a, <a<l

wia (p)(1+ By)

when 0<pB,,a, =0

wi (p)=

&)

The excursion of the process w,+(p) away from
the long-term trend W(p)may take considerable

time depending on the dominance of either the
mean-reverting process or the jump process. Since
winning a prize, especially the upper divisional
prizes, is a rare event, it is expected that the mean-
reverting process will dominate the jump process
in the long haul.

Simulation is preferred to laboratory experiments
in the study of the dynamics of PWF for gains in
the context of lotteries. Firstly, it is almost
impossible to elicit the values of a,and B,. The

probabilities of winning lotto jackpots are almost
incomprehensible  for the untrained - mind
(1.2774E-7 in ALB’s Saturday and 1.81887E-8 in
Oz Lotto), let alone comprehending the changes in
these probabilities due to encouraging Or
discouraging factors.

Secondly, there may be cross-pollination of the
real world and laboratory PWEs. Without
completely isolating the subjects in real time, there
may be cross-pollination of their real world PWFs
and their experimental PWFs. This can be
partially prevented by screening out subjects who
purchase lotteries in the real world. The cross-
pollination of the subjects’ real time experience in
the real world and the experimental setting may
distort the results obtained in the experiment. This
makes simulation an ideal candidate in the study of
the evolution of PWFs.

4. NUMERICAL VALUES
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The prizes of ALB’s Saturday or Oz Lotto are
distributed as a Bin(5, 0.0064563), obtained by
using the software @RISK (Palisade Corp). Table
1 shows the relationship of the prizes and the
distribution of Bin(5, 0.0064563).

Table 1: The Probabilities of occurrence of the
various prizes in the ALB’s Saturday and Oz Lotto
and the distribution of Bin(5, 0.0064825).

different values if individuals won different
divisional prizes. It is postulated that the bigger
the prizes the bigger the jump. Again, §,is
randomised for each fractile or prize. Because of
the difficulties of and the costs associated with
eliciting the values of the upper bound and lower
bound of the ranges, the ranges are subjective
estimates. The relationship between the F(x, ),

o, , and B3, are depicted in Table 2.

Table 2: Relationship F(x, ), o, , and B, .

x; | Prizes pi F(x;)

0 - 0.99510614327 | 0.99510614327
1 Fifth 0.003362 0.99846814327
2 Fourth | 0.001503 0.99997114327
3 Third 2.72557E-5 0.99999839897
4 Second | 1.47329E-6 0.99999987226
5 First 1.2774E-7 1

The next step is to generate the numerical values
fore, and ;. To avoid assigning ad hoc numbers

too, and B,, we select to randomise them. The

adjustment rate o, per event time if no prize was

won is assumed to be a random variable between 0
and 0.05. This range of values may be very
conservative given the observation by Cohen et al.
[1987] in their experiment where their subjects
exhibit steep learning curve in the 10-week
repeated experiment. As for the jump
parameter 8,, it is argued that 8, will assume

F(x,) ] B
F(x,) < F(xo) 0-0.05 NA
F(xp) < F(x,)<F(x)) NA 0-005
F(x)<F(x,) < F(xp) NA 0.05-0.10
F(xy)<F(x,) < F(x3) NA 0.10-0.15
F(x3)<F(x,) < F(x4) NA | 0.15-030
F(x4)< F(x,) < F(x5) NA 0.30-1.00

5. SIMULATION RESULTS

In this section, we examine the dynamic process
obtained by the Monte Carlo simulation technique.
The initial PWF for gains is taken from Figure 1.
To see exactly how the PWF for gains evolves,
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Figure 2: Simulation results for weeks 26, 52, 78, and 104.
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Figure 3: Convergence of weighted to objective probabilities.

250 simulations are done for 260 weeks. For each
simulation, a random number is generated from
U(0, 1) for each week of the 260 weeks and then
converted into random variates by the inverse
transform method. The simulation results for
weeks 26, 52, 78, and 104 are presented in Figure
9. The Week 104 and 156 plots are omitted
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Figure 4: Simulation result for week 26.

because they are almost identical to the linear PWF
and are very difficult to discern in a diagram of
this size. '

Figure 2 shows that there is indeed a tendency for
the PWF for gains to converge to the linear PWF

over time. Figure 3 shows the speed of
convergence of the weighted probabilities to the
abjective probabilities. It seems that individuals
take less time to revise downward their weighted
probabilities of rare events and much longer time
to revise upward to revise upward their weighted
probabilities of frequent event.

Figure 4 shows the upper bound and lower bound
of the simulation results for Week 26. The upper
bounds and the lower bounds for other weeks
resemble what is presented in Figure 3.

6. DISCUSSIONS AND CONCLUSIONS

In this paper, we are interested in the dynamic
nature of probability weighting functions. We
analyse the reasons that the probability weighting
function should be dynamic rather than static as
traditionally assumed in cumulative prospect
theory. A mean-reverting model with a jump
process is constructed to emulate the evolution of
the probability weighting function. Our Monte
Carlo simulation results show that individuals’
probability weighting functions are likely to
converge to the linear probability weighting
function over time. Although probability
weighting function for losses is not symmetric to
probability weighting function for gains, we
anticipate similar pattern of convergence.

The discrete-event model presented here could be
further improved by (a) differentiate the impact of
early winning may have had more influence on
behaviour than late winning, (b) including long-
term (more than one event time) impact of winning
any prize, and (c) obtaining the ranges for the
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adjustment rate and the jump rate in an
experimental setting.
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